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1 Introduction

2 Background

We assume that the dynamics of the biochemical re-
action network are described by the following differ-

ential equation

$(t) = Nu(s(t), p), (1)

where the vector s € R” contains the concentrations
for n chemical species, the matrix N € R"*™ defines
the stoichiometry of the reaction network, the func-
tion v(-,-) : R* x RP — R™ describes the rates for m
chemical reactions, and the vector p € RP contains
the relevant kinetic parameters for these rates such
as enzyme concentrations and catalytic efficiencies.

As the inclusion of some species in the model (1)
leads to redundant equations, one commonly removes
these species to create a reduced stoichiometric ma-
trix N with linearly independent rows. We can re-
cover the full matrix by introducing the link matrix
L:

N =LN,

Let s;(t) denote the concentration of the reduced set
of species. Then, we can recover s(t) from s;(t) using
the relation

s(t) = Ls;(t) +

with the appropriate choice for the constant vec-

tor t. The constant vector ¢ accounts typically for

mass conservation. For example, the mass constraint

T
a(t)+b(t) = 1 yields the link matrix L = [ 1 -1 ]

T
and constant vector t = [ 0 1 } with s(t) =

[ at) by ]T and s;(t) = a(t).

MCA is concerned with how the properties of
the network change when the parameters p are per-
turbed. The sensitivity function or control coeffi-
cient is defined as

Using the chain rule for differentiation, one can show
that the control coefficient z(t) satisfies the following

differential equation

Du(s(t). )
(N" 95(1)

du(s(t), p)

(1) = 5

L) z(t)+ Np . (2)
Note that equation (2) is linear: it is simply the lin-
earization of equation (1). If the reaction network (1)
is at a steady state sgs, then the sensitivity equation
(2) for infinitesimal perturbations about the steady
state satisfies the linear, time-independent, differen-

tial equation
i(t) = (Npe&sL) (t) + Npe, 3)

where




The matrices €, € R™*" and €, € R™*? are called
the elasticity coefficients. They provide a mea-
sure for how strongly a single reaction in isolation is
changed by infinitesimal perturbations either to the
concentrations s or parameters p. It is possible to
directly measure the elasticity coefficients from ex-
periments without needing to know the rate laws v(-)
explicitly.

As equation (3) is linear and time invariant, we can
take the Laplace transform and obtain the frequency

response for the control coefficients:

X(jw) = (jwI — NpezL)ileep (4)
where X (jw) is the Laplace transform of z(¢) and
j is the complex number /—1. While the elasticity
coefficient €, is typically constant, it is also possible
to consider time-varying perturbations e, (t). To ex-
plore frequency variations, we replace €, with €,(w) in
equation (4). At steady state (w = 0), the sensitivity
equation (4) become

X(0) = —(Npez L) ' Npey,

assuming the inverse exists. This equation is known
as the connectivity theorem as it relates the con-
trol coefficients X (0) to the elasticity coefficients ¢,
at steady state. It is a cornerstone of MCA.

In addition to the concentrations s(t), MCA is con-
cerned with perturbations to the flux through the
network. We define the flux control coefficient as

A dv
t) = —.
y(t) o
The flux control coefficient y(¢) is related to the con-

trol coefficient z(t) by the affine relation

v = 5+ (5],

€p + (e,L) z(t),

where the second relation holds for perturbations
about the steady state sg5. Note the difference be-
tween y and €.

If A2 (Npe,L), B2 N,, C2¢ and D 21,
then we represent the connectivity equations using

the following state-space form:

T =

Az + Bep,
Cz + Dey,

(5a)

y = (5b)

where €, is the input.

In the remainder of the paper, we explore the con-
nectivity equation (3) and demonstrate how some el-
ementary tools from control analysis can be applied
to this equation to explore regulation in biochemical

networks.

3 Signal-Flow Graphs

Molecular biologist commonly draw complex dia-
grams describing intracellular pathways in cartoon
format. While these diagrams sucessfully enumer-
ate the players and interactions within the pathway,
they are unable to convey any information regarding
dynamic or regulatory properties.

When analyzing and designing control systems, en-
gineers often employ signal-flow graphs. Signal-flow
graphs diagram the feedback structure using unam-
biguous notation. Signal-flow diagrams are also able
to convey dynamic information. While signal-flow
graphs are less relevant for design now with numer-
ous CAD procedures, they are still indispensable for
analysis, especially for linear systems.

As we demonstate, it is possible to diagram the
regulatory structure of pathways characterized by
the control and elasticity coefficients using signal-flow
graphs. While we would be too optimistic if we ex-
pect molecular biologists will adopt a similar conven-
tion, our pragmatic goal is to bridge biological net-



work analysis with control theory, and in the process
leverage the tools, theories, and intuition developed
over the last century gained with artificial systems
for biology. What better way than to start with a

control diagram!

3.1 Linear Cascades

Consider the following linear cascade of reactions

0 3 s =3 55 - ()

(6)

We assume that the reaction mechanisms are elemen-

tary to the degree that

1

v = Ul(slyp)a U2

3

= U2(31,52,P)a v = UB(SB,P)-

The kinetic equations for this mechanism are of the

form
51 = wi(s1,p) —v2(s2,53,D),
55 = wv(s1,52,p) —v3(s2,Dp),
53 = U3(S2ap)'
Let .
L)
J 68]' ’

where s; denotes the j*" element of the n-dimensional
vector s.

The sensitivity equations for this reaction mecha-

nism are
1 (t) = (e% - e%) z1(t) — 6%1‘2 (t) + 611) - ei(?a)
To(t) = (eg — eg) To(t) + 1wy (t) + 6120 — ei(?b)

If we take the Laplace transform, then we can recast

the sensitivity equations (7) in the frequency domain

juXi(w) = (e —€)X

JwXo(w)
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We can represent the sensitivity equations in stan-
dard, block diagram format for the single perturba-
tion €, (Figure 1), where the elasticity coefficients are
viewed as transfer functions. Alternatively we can
equivalently represent these equations graphically us-
ing a signal flow diagram (Figure 2). For aesthetic
reasons, we prefer the signal flow diagram to the
transfer function representation.

Evident from the diagram (Figure 2) simple reac-
tion result in local feedback loops, negative and pos-
sibly positive. For example, a first-order degradation

reaction is equivalent to a negative feedback loop:
$=p—ks

where p is the rate of production and k is the degra-
dation rate. In the example, the reactions v, and v3
act as negative feedback loops of s; and s» respetively
(—e? and —e?). For reversible reactions, the product
negatively regulates the reactant (—e%). Likewise, if
the reactions v; and vy are reversible, then the prod-
uct inhibits its synthesis. This inhibition is equivalent
to a negative feedback loop (e} < 0 and e3 < 0). If
these reactions are autocatalytic, then the product
enhances its synthesis and process is equivalent to a
positive feedback loop (ef > 0 and €3 > 0). The per-
turbations €, are equivalent to additive disturbances.

We did not need to know the specific rate equa-
tions in order to construct the signal flow diagram.
All we needed to know was the general structure of
the equations and elasticity coefficient if we wish to
numerically evaluate the network. Note also that re-
actions form local feedback loops on adjacent species
in the graph. These loops result from mass conserva-
tion and reversible reactions.

For a signal-flow graph, the transfer function Tj;
between i'h and jth node is given by Mason’s rule

T ok Pijk Ak
KA N



where the summation is taken over all possible paths

from node i to j and

Pijr, = Eth path from node i to 7,
A = determinant of graph,
Ajjr = cofactor of the path Pjjy.

Numerous algorithms exist for applying Mason’s rule
to generic signal-flow networks.

Applying Mason’s rule we obtain the following
transfer function relating e;) to the control coefficients
X1 (w) and Xs(w):

X (w) =
(jw — (3 — 62)) el +e2
—w? — ((e1 —€]) + (3 — €3)) jw + 61‘52 — €j€3 + €fe;
Xa(w) =

e%e;) + (jw + (el — e%)) 6?)

—w? = ((e] —€]) + (€5 — €3)) jw + €]€5 — €163 + €7€d

Note that both equations have the same denominator
and the perturbations €, arise only in the numerator.
This fact is well known in control: the denominator is
the sensitivity function and is characterized by the
network structure irrespective of the perturbations.

At steady state, we have the sensitivity equations

~(& -~ )b + 33

X:1(0) =
1(0) e%e% —eles + 6162
exep + (€1 +€f)ep
X200 = T

€1€5 — 6162 + 6162

These equations are the result of the connectivity the-
orem.

3.2 Linear Cascades With Feedback
Inhibition

Consider the following set of reactions with endprod-
uct inhibition

Figure 2: A signal-flow representation of the dynamic
connectivity equations. The open circle denotes a
summer and the shaded triangle denotes an integra-
tor: ]iw For aesthetic reasons, we prefer these graph-

ical representations to transfer functions.
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The kinetic equations for this mechanism are

3'1 = Ul(Sl,SN,p)_U2(317827p)7
$9 = ’1}2(81,82,17)_7}3(3273351))7
SN = on(sn—1,8N) — UN+1(SN,P)-

For this example, the connectivity equations be-

come
i1(t) = (el =€) zi(t) — e352(t) + enan +€p
ia(t) = (&3 —€3) xa(t) + 1w (t) — exas(t)
an(t) = (e —eny)on +en Xno1

Figure 3 diagrams the frequency response of the con-
nectivity equations as a signal-flow graph. As with
the previous example, the reactions result in local
feedback loops. However, there is also the global neg-
ative feedback loop resulting from endproduct inhibi-

tion (—el). This example illustrates how it is difficult



Figure 1: A transfer function representation of the dynamic connectivity equations. As evident from the dia-

gram, reversible reactions introduce feedback loops as the concentration of the downstream species regulates

the concentration of the upstream species.

to distinguish the process dynamics from the regula-
tion and the regulatory dynamics can be embedded

directly in the process.

3.3 Tryptophan Biosynthesis

The t¢rp operon encodes five genes that synthesize
tryptophan from chorismate, the common precursor
for the aromatic amino acids phenyalanine, tyrosine,
and trypotophan. As with many biosynthetic path-
ways, the process is subject to a hierarchy of reg-
At the level of the gene,
expression of the operon is negatively regulated by

ulatory feedback loops.

tryptophan: tryptophan binds the trp repressor and
also inhibits transcription. Typtophan, in the form
of charged tRNAs, inhibits transcription through the
process of translation attenuation. At the metabolic
level, tryptophan allosterically inhibits the enzymes
in the pathway.

A simple model for tryptophan biosynthesis is de-
scribed by the following differential equations

mo=  vl(p) — v’(m)
——" ——
transcription ~ mRNA deg.

e =

vi(m) — v'(e)
—— =

translation  prot. deg.

po= vep) —v°(p) - v'(p)
S—— SN—~— S—~—
trp synthesis  trp deg.  trp consump.

The sensitivity equations for this model take the

following form

1:1 = 6%1’3 — 6%1‘1

: 3 3 4

T2 = €I + €3T3 — €T3

: _ 5 5 6 7

¥z = €y + (€5 —e3 —€3)x3

The signal diagram (4) illustrates the signaling hier-
archy in the tryptophan example. The global loop
(—€3) results from the genetic regulatory mecha-
nisms. The loops (€5 < 0, —€§, and —€f) result from
allosteric inhibition by tryptophan, degradation, and
consumption respectively. In terms of the connectiv-
ity equations and local dynamics, they are equivalent,
though obviously they each have unique role.

3.4 Comments

The aim in the preceding sections was to demon-
strate that there is a one-to-one map between MCA
and control theory. In fact, the previous discussion
extends MCA which until recently was limited to
steady-state analysis (cite Ingalls). For brevity, we



Figure 3: Signal-flow diagram for a linear cascade with feedback inhibition (N = 5). The open circle denotes

a summer and shaded triangle denotes the integrator ]%

Figure 4: Tryptophan Example: Signal-flow diagram
for the tryptophan pathway. Shaded triangles de-
notes the integrator ]iw

have avoided explicit rate expressions and numerical
values. However, one can imagine how tools from
control theory can be applied to the analysis of bio-
chemical networks (at least to first order approxima-
tion). Possible questions include controllability, ro-

bustness, and the influence of noise.

4 Controllability

In drug design and metabolic engineering, the goal
is to perturb the properties of the network typically
by the addition of a small molecule inhibitor or ge-
netic manipulation. In strongly connected networks,
the perturbations may propagate through the net-
work and lead to unanticipated consequences. As we
demonstrate this problem is identical to problem of
controllability.

In designing a drug or genetic intervention, we
seek to simultaneously upregulate and downregulate
a subset of species while leaving the others unaffected.
This amounts to defining a concentration target z*
or flux target y*. The question is whether there ex-
ists a perturbation €,, possible time-varying though
preferably constant, that can reach this target. This



problem is similar to issue of steady-state controlla-
bility.

The steady-state gain for the sensitivity equations
is
—(Npe, L)~
C¥ep,

1
Npep,

el

and for the flux is

(I — (e2L) (Npe, L)~

y
CYep,

Y 1Np) €p»

>

where C* and CY are known as the concentration
control matrix and flux control matrix. Note
that

C*¥e,L = —1, CYe, L =0.

These equalities are known as the summation the-
orem. Also note that CYCY = CY.

We can formulate the design problem as the follow-
ing control problem. Does there exist €, such that

* x * __ Yy
z* =C%, or y* = CY%,

The answer is yes (to a first-order approximation) if
x* and y* are contained in the range of C' and CV.
Even if the answer is yes, not all perturbations are
experimentally feasible nor advised. In many ways,
this problem is similar to the steady-state analysis
performed in multi-variable control.

4.1 Flux Analysis: Linear Pathway

Consider again the linear pathway
O3 s B sy 3

(8)

We assume for simplicity that the reactions are effec-
tively irreversible. The sensitivity equations are

2 &

s - o], [1]-1]o p
= €
€ € of 1 |-1 y

€

P

Analysis of the controllability matrix indicates that
both perturbations to reactions v; and wvs can in-
dependently control sensitivity. However, perturba-
tions to vz can only effect x».

The flux sensitivity equations are

1 _ 1
y - 6p
2 _ 2 2
Yo = e tem
3 _ /3 3
Yo = gt ex

At steady state, we have the following connectivity

relations
1.2
_ %%
T = >
€
1
1.2
_ %%
) = 3
€
2
and flux relations
1_ 1 .2 _ 1 .3 _ 1
y _6a7 y _6a7 y _ea

It is immediate from the these equations that enzyme
a can change the flux. This result is a simple illus-

tration of a pathway with a rate-limiting step.

4.2 Branched Pathway

Consider the branched pathway illustrated in Fig-
ure 4.2 where the goal is to produce substrate s;
without effecting a key metabolic substrate s3. The

sensitivity equations assuming irreversible reactions

are
—(e+€e) 0 0 1 -1 .

. 2 1 €p
T = €1 —e;r 0 z+| 0 1 5

3 5 €p

€] 0 —e3 0 0
The control equations are

=&~
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Sa Ss

1{ €2
1 1
To = — (e —€)+€
1|2 3 \p ™ p P
€ L€y + €

1 €2

1 1 2

T3 = — |—5———= (€ —¢€

eg 6%+6?(p p)

Simple inspection of these equations indicates that
both reactions v; and vs need to be increased in order
to satisfy the design objective. This problem and it’s

solution is well-known in metabolic engineering.

5 Conclusion



